Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474413

RESUMO

Cardiomyocytes rely on proper mitochondrial homeostasis to maintain contractility and achieve optimal cardiac performance. Mitochondrial homeostasis is controlled by mitochondrial fission, fusion, and mitochondrial autophagy (mitophagy). Mitophagy plays a particularly important role in promoting the degradation of dysfunctional mitochondria in terminally differentiated cells. However, the precise mechanisms by which this is achieved in cardiomyocytes remain opaque. Our study identifies GRAF1 as an important mediator in PINK1-Parkin pathway-dependent mitophagy. Depletion of GRAF1 (Arhgap26) in cardiomyocytes results in actin remodeling defects, suboptimal mitochondria clustering, and clearance. Mechanistically, GRAF1 promotes Parkin-LC3 complex formation and directs autophagosomes to damaged mitochondria. Herein, we found that these functions are regulated, at least in part, by the direct binding of GRAF1 to phosphoinositides (PI(3)P, PI(4)P, and PI(5)P) on autophagosomes. In addition, PINK1-dependent phosphorylation of Parkin promotes Parkin-GRAF1-LC3 complex formation, and PINK1-dependent phosphorylation of GRAF1 (on S668 and S671) facilitates the clustering and clearance of mitochondria. Herein, we developed new phosphor-specific antibodies to these sites and showed that these post-translational modifications are differentially modified in human hypertrophic cardiomyopathy and dilated cardiomyopathy. Furthermore, our metabolic studies using serum collected from isoproterenol-treated WT and GRAF1CKO mice revealed defects in mitophagy-dependent cardiomyocyte fuel flexibility that have widespread impacts on systemic metabolism. In summary, our study reveals that GRAF1 co-regulates actin and membrane dynamics to promote cardiomyocyte mitophagy and that dysregulation of GRAF1 post-translational modifications may underlie cardiac disease pathogenesis.


Assuntos
Proteínas Ativadoras de GTPase , Mitofagia , Miócitos Cardíacos , Fosfatos de Fosfatidilinositol , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Actinas , Proteínas Ativadoras de GTPase/metabolismo , Mitofagia/fisiologia , Miócitos Cardíacos/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Nat Commun ; 14(1): 8187, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081847

RESUMO

The serine/threonine kinase, PINK1, and the E3 ubiquitin ligase, Parkin, are known to facilitate LC3-dependent autophagosomal encasement and lysosomal clearance of dysfunctional mitochondria, and defects in this process contribute to a variety of cardiometabolic and neurological diseases. Although recent evidence indicates that dynamic actin remodeling plays an important role in PINK1/Parkin-mediated mitochondrial autophagy (mitophagy), the underlying signaling mechanisms remain unknown. Here, we identify the RhoGAP GRAF1 (Arhgap26) as a PINK1 substrate that regulates mitophagy. GRAF1 promotes the release of damaged mitochondria from F-actin anchors, regulates mitochondrial-associated Arp2/3-mediated actin remodeling and facilitates Parkin-LC3 interactions to enhance mitochondria capture by autophagosomes. Graf1 phosphorylation on PINK1-dependent sites is dysregulated in human heart failure, and cardiomyocyte-restricted Graf1 depletion in mice blunts mitochondrial clearance and attenuates compensatory metabolic adaptations to stress. Overall, we identify GRAF1 as an enzyme that coordinates cytoskeletal and metabolic remodeling to promote cardioprotection.


Assuntos
Actinas , Proteínas Quinases , Animais , Humanos , Camundongos , Actinas/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Homeostase , Mitocôndrias/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37526609

RESUMO

Developmentally programmed polyploidy (whole-genome duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, in both Drosophila larvae and human organ donors, we reveal distinct polyploidy levels in cardiac organ chambers. In Drosophila, differential growth and cell cycle signal sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume and cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic human cardiomyopathies. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest that precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.


Assuntos
Drosophila , Miócitos Cardíacos , Animais , Humanos , Poliploidia , Ploidias , Ciclo Celular
4.
Front Cardiovasc Med ; 10: 1216917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408655

RESUMO

Background: Reliable biomarkers for assessing the viability of the donor hearts undergoing ex vivo perfusion remain elusive. A unique feature of normothermic ex vivo perfusion on the TransMedics® Organ Care System (OCS™) is that the donor heart is maintained in a beating state throughout the preservation period. We applied a video algorithm for an in vivo assessment of cardiac kinematics, video kinematic evaluation (Vi.Ki.E.), to the donor hearts undergoing ex vivo perfusion on the OCS™ to assess the feasibility of applying this algorithm in this setting. Methods: Healthy donor porcine hearts (n = 6) were procured from Yucatan pigs and underwent 2 h of normothermic ex vivo perfusion on the OCS™ device. During the preservation period, serial high-resolution videos were captured at 30 frames per second. Using Vi.Ki.E., we assessed the force, energy, contractility, and trajectory parameters of each heart. Results: There were no significant changes in any of the measured parameters of the heart on the OCS™ device over time as judged by linear regression analysis. Importantly, there were no significant changes in contractility during the duration of the preservation period (time 0-30 min, 918 ± 430 px/s; time 31-60 min, 1,386 ± 603 px/s; time 61-90 min, 1,299 ± 617 px/s; time 91-120 min, 1,535 ± 728 px/s). Similarly, there were no significant changes in the force, energy, or trajectory parameters. Post-transplantation echocardiograms demonstrated robust contractility of each allograft. Conclusion: Vi.Ki.E. assessment of the donor hearts undergoing ex vivo perfusion is feasible on the TransMedics OCS™, and we observed that the donor hearts maintain steady kinematic measurements throughout the duration.

5.
Orthod Craniofac Res ; 26 Suppl 1: 210-220, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37184946

RESUMO

PURPOSE/OBJECTIVES: Multimedia presentations and online platforms are used in dental education. Though studies indicate the benefits of video-based lectures (VBLs), data regarding user reception and optimal video features in dental education are limited, particularly on Web 2.0 platforms like YouTube. Given increasing technology integration and remote learning, dental educators need evidence to guide implementation of YouTube videos as a freely available resource. The purpose of this study is to determine video metrics, viewership and format efficacy for dental education videos. METHODS: First, a cross-sectional survey was conducted of viewers (N = 683) of the Mental Dental educational videos on YouTube. Analytics were evaluated for 677 200 viewers to assess audience demographics, retention and optimal video length. Second, a randomized crossover study was conducted of dental students (N = 101) who watched VBLs in either slideshow or pencast formats and were tested on content learning to compare format efficacy. RESULTS: Most viewers of Mental Dental videos were dental students (44.2%) and professionals (37.8%) who would likely recommend the platform to a friend or colleague (Net Promoter Score = 82.1). Audience retention declined steadily at 1.34% per minute, independent of video length. Quiz performance did not differ between slideshow and pencast videos, with students having a slight preference for slideshows (P = 0.049). CONCLUSIONS: Dental students and professionals use VBLs and are likely to recommend them to friends and colleagues. There is no optimal video length to maximize audience retention and lecture format (slideshow vs. pencast) does not significantly impact content learning. Results can guide implementation of VBLs in dental curricula.


Assuntos
Mídias Sociais , Humanos , Gravação em Vídeo , Estudos Cross-Over , Estudos Transversais , Educação em Odontologia
6.
Hum Gene Ther ; 34(7-8): 303-313, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36927038

RESUMO

Transplantation, the gold standard intervention for organ failure, is a clinical field that is ripe for applications of gene therapy. One of the major challenges in applying gene therapy to this field is the need for a method that achieves consistent and robust gene delivery to allografts. Normothermic ex vivo perfusion is a growing organ preservation method and a device for cardiac preservation was recently approved by the Food and Drug Administration (FDA) (Organ Care System, OCS™; TransMedics, Inc., Andover, MA); this device maintains donor hearts in a near physiologic state while they are transported from the donor to the recipient. This study describes the administration of recombinant adeno-associated viral vectors (rAAVs) during ex vivo normothermic perfusion for the delivery of transgenes to porcine cardiac allografts. We utilized a myocardial-enhanced AAV3b variant, SASTG, assessing its transduction efficiency in the OCS perfusate relative to other AAV serotypes. We describe the use of normothermic ex vivo perfusion to deliver SASTG carrying the Firefly Luciferase transgene to porcine donor hearts in four heterotopic transplant procedures. Durable and dose-dependent transgene expression was achieved in the allografts in 30 days, with no evidence of off-target transgene expression. This study demonstrates the feasibility and efficiency of delivering genes to a large animal allograft utilizing AAV vectors during ex vivo perfusion. These findings support the idea of gene therapy interventions to enhance transplantation outcomes.


Assuntos
Transplante de Coração , Suínos , Animais , Humanos , Transplante de Coração/métodos , Perfusão/métodos , Doadores de Tecidos , Terapia Genética/métodos , Aloenxertos
7.
bioRxiv ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798187

RESUMO

Developmentally programmed polyploidy (whole-genome-duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, we reveal roles for precise polyploidy levels in cardiac tissue. We highlight a conserved asymmetry in polyploidy level between cardiac chambers in Drosophila larvae and humans. In Drosophila , differential Insulin Receptor (InR) sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume, cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic systemic human heart failure. Using human donor hearts, we reveal asymmetry in nuclear volume (ploidy) and insulin signaling between the left ventricle and atrium. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.

8.
J Cardiovasc Transl Res ; 16(3): 748-750, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36344902

RESUMO

The porcine intra-abdominal heterotopic heart transplantation model allows for the assessment of immunologic effects on cardiac transplantation without relying on the allograft to maintain hemodynamic support for the animal. Historically, allograft function and histology is monitored by physical exam, echocardiogram evaluation, percutaneous core biopsy, and open biopsy. We performed transvenous endomyocardial biopsies in three pigs that had undergone heterotopic heart implantation. We describe the procedure to be feasible and reproducible, and that histologic results from these biopsies correlated with those from corresponding tissue collected by surgical dissection at the time of allograft explantation. The ability to perform endomyocardial biopsies in the heterotopic heart transplantation model allows for serial non-invasive monitoring of allograft histology.


Assuntos
Transplante de Coração , Suínos , Animais , Humanos , Transplante de Coração/efeitos adversos , Miocárdio/patologia , Doadores de Tecidos , Coração , Biópsia/métodos , Rejeição de Enxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...